Affichage Public Jeu de l'été 2021 V3.00 ou tout le monde peut poster !!!
Sector28
Membre non connecté
Villageois
Bank Panic
Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
Sector28
Membre non connecté
Villageois
Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
Sector28
Membre non connecté
Villageois
BRAVO!!
SCORES:
Dan: 4 points
Jipé: 2 points
Sector28: 2 points
SCORES:
Dan: 4 points
Jipé: 2 points
Sector28: 2 points
Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
Sector28
Membre non connecté
Villageois
À Dan de poster une vignette ...
Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
Sector28
Membre non connecté
Villageois
Gun Fright
Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
Sector28
Membre non connecté
Villageois
Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
Répondre
Vous n'êtes pas autorisé à écrire dans cette catégorie