[Reference] Algorithm of ADPCM

A. Procedure of ADPCM voice analysis

(1) AD conversion The voice is converted into the PCM data of 8bit in each

sampling rate.

2 8->16 conversion 256 obtained PCM data is multiplied, and the data of 16bit;

It converts it into Xn.

(3) Calculation of dn This Xn is compared with forecast value ^xn. and the

difference; dn is obtained.

4 Decision of ADPCM data

It is "0" that dn is positive as for MSB(L4) of ADPCM data.

It makes it to "1" negatively.

Absolute value of difference; |dn| Width of quantization;

Remainder 3bit(L3, L2, L1) of ADPCM data is decided from the

relation of Δn .

Encoding ADPCM data is as shown in Table 5.1.

Table 5-1: ADPCM data and quantization width change rate(f)

L4		L3	L2	L1	f	
Dn>=0	Dn<0	LJ	LZ	LI	_	Condition (In= dn /∆n)
0	1	0	0	0	57/64	In <1/4
		0	0	1	57/64	1/4<= In <1/2
		0	1	0	57/64	1/2<= In <3/4
		0	1	1	57/64	3/4<= In <1
		1	0	0	77/64	1<= In <5/4
		1	0	1	102/64	5/4<= In <3/2
		1	1	0	128/64	3/2<= In <7/4
		1	1	1	153/64	7/ 4 <= In

Conversion from the voice data to ADPCM data ends because of the above-mentioned operation.

5 Update of forecast value and width of quantization

When ADPCM data is obtained, the forecast value of the next step; x n+1 Width of quantization; x n+1 is renewed.

 $xn+1= (1-2*L4) * (L3+L2/2+L1/4+1/8) *\Delta n+xn$

 Δ n+1= f (L3, L2, L1) * Δ n : Δ nmin=127, Δ nmax=24576

*Initialization: Forecast value ^x1=0

Width of quantization Δ 1=127

Hereafter, the voice analysis is done repeating the operation of 1-5 every each sampling time.